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Abstract: We consider the effect of variational determination of the location of the generalized transition state on the predic­
tion of kinetic isotope effects for atom transfer reactions. Instead of choosing the transition state dividing surface on the basis 
of the conventional maximum energy criterion we use a maximum free energy criterion in which entropic effects compete with 
energetic effects. We consider several reactions with symmetric and nearly symmetric saddle points, loose saddle points, and 
intermediate cases. Numerical examples are based on model potential energy surfaces for three-body systems. The model po­
tential energy surfaces are based on a modified and extended bond-energy, bond-order method that we have presented previ­
ously. We present examples involving isotopic substitution by 2H, 3H, 14C, and 37Cl for a wide range of temperatures. In some 
cases the results of the variational calculations essentially confirm the more readily used conventional transition state theory. 
However, this is not always the case. We show that the location of the variationally best transition state dividing surface is 
sometimes very sensitive to isotopic substitution. Furthermore, this sometimes leads to a large change in the predicted kinetic 
isotope effect. 

I. Introduction 

Transition-state theory (TST) is considered by many 
workers to provide a complete theory of kinetic isotope effects 
(KIEs) and it is the essentially universally applied tool for the 
interpretation of KIEs.1 4 However, in some cases the accuracy 
of rate constants obtained using TST is expected to be poor, 
and there are indications that generalized TST may be more 
valid.5-7 The present article is concerned with the application 
of the canonical variational theory (CVT),5-7 one form of 
generalized TST, to primary kinetic isotope effects and with 
ascertaining the conditions which might lead to a serious 
breakdown of conventional TST for KIEs in gas-phase atom-
transfer reactions. 

The largest KIEs are primary H / D / T isotope effects. Such 
KIEs have been particularly well studied for many reactions.3'4 

Proton transfers8-10 and hydrogen-atom transfers5 '11-13 are 
the simplest cases, and two key concepts have emerged in the 
application of TST to these reactions. The first is the relation 
of the primary KIE to symmetry of the transition state: larger 
isotope effects are usually interpreted as corresponding to more 
symmetric transition states.2.8-10,12,14.15 -J-J16 s e c o n c j j s tun­
neling: larger KIEs than can be accounted for by TST with 
isotope-independent transmission coefficients even with 
symmetric transition states (e.g., ku/ko =* 10 for atom-dia­
tom reactions at 300 K) are usually attributed to tunneling,9,16 

although of course tunneling may also play an important role 
when k^/ko is not larger than the maximum value that could 
possibly be accounted for without tunneling. Primary KIEs 
involving heavier isotopes have also been studied and are 
generally less than 1.2.17-18 

In principle, TST should include a classical recrossing 
coefficient, a nonequilibrium correction factor, and a quantal 
correction factor, one or all of which may be defined so that 
TST becomes exact.15'19 We here combine these effects into 
a single function of temperature called the transmission 
coefficient. In practice the transmission coefficient cannot be 
determined exactly. It is often assumed to be unity or at least 
independent of isotopic substitution, although isotope-de­
pendent corrections seem to be required for proton transfer and 
hydrogen atom transfer reactions.9-13-16 The fundamental 
assumption of TST is a classical one, namely, that all trajec­
tories through the transition state, a dividing surface in con­
figuration space or phase space separating reactants from 
products, cross the dividing surface but once and further that 
there is a quasi-equilibrium between reactants and systems at 

the dividing surface proceeding toward products.20-21 Classi­
cally, TST for any choice of dividing surface provides an upper 
bound on the thermal rate constant.22 The conventional version 
of TST is obtained if the dividing surface is placed at the 
highest energy point on the minimum energy path and per­
pendicular to the path of steepest descents away from this 
saddle point. In some cases there is another location of the 
dividing surface which yields a lower predicted thermal rate; 
in that case, in classical mechanics, the alternative dividing 
surface is crossed less frequently than the conventional one and 
is more consistent with the fundamental assumption of TST. 
In CVT one varies the location of the dividing surface to 
minimize the predicted thermal rate constant; this can be re­
formulated as a maximization of the free energy of activation 
as compared to maximization of the classical potential energy 
of activation in conventional TST. Although CVT is more 
consistent than conventional TST, it is not exact as applied here 
because (1) no attempt is made to estimate the extent of non-
equilibrium or classical recrossing at the variational dividing 
surface; (2) for practical reasons one does not in general allow 
completely unconstrained variations of the dividing surface; 
(3) one calculates the generalized transition state partition 
function with a separable reaction coordinate and separable 
vibrations and rotation; (4) it is impossible to incorporate all 
quantum-mechanical effects into conventional or generalized 
TST. Regarding (2), in the present work we choose the dividing 
surface to be a surface in configuration space perpendicular 
to the path of steepest descents, and we choose the best such 
dividing surface for each temperature. In general there is no 
such surface that is not recrossed classically. One could attempt 
to improve upon the formalism employed here by using less 
constrained dividing surfaces in the CVT or one could go be­
yond the CVT by finding the best dividing surface for each 
total energy and total angular momentum or by attempting 
to estimate the amount of classical recrossing. In regard to (3) 
we note that we do include anharmonicity but our transition 
state energy levels are still not exact. Regarding (4), in the 
present work we calculate transmission coefficients in an at­
tempt to estimate the dominant quantal effects on motion along 
a reaction coordinate which is assumed separable. We make 
no attempt to treat nonseparability of the reaction coordinate 
or vibrational nonadiabaticity which would alter the usual 
quantization of bound degrees of freedom of the transition 
state. Nonseparability and vibrational nonadiabaticity can also 
have a large effect on the dynamics in the tunneling re­
gime.23 
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II. Theory and Calculational Details 
The canonical variational theory formalism employed here 

is explained elsewhere.6 In summary the generalized transition 
state theory rate constant with unit transmission coefficient 
for an atom-diatom reaction at temperature T for a dividing 
surface located a distance s from the saddle point is given 
by 

kGT(Ts) = a — £ G T ( 7 > ) e~^MEPW/W tx\ 

where <x is the symmetry factor, k% is Boltzmann's constant, 
T is temperature, 3^eK 7") and QR-mt(T) are the rdactant 
relative translational partition function per unit volume-and 
internal partition function, s is the reaction coordinate mea­
sured from s = 0 at the saddle point, QCT(T,s) is the gener­
alized transition state internal partition function, and KMEP(S) 
is the classical potential energy along the minimum-energy 
path at the dividing surface at s relative to the classical po­
tential energy minimum of the reactants. Equation 1 can also 
be written 

kGT(T,s) = — A:cv-AGGT,o{7-,s)ABr ( 2 ) 

h 

where K0 is the reciprocal of the standard-state concentration 
and AGGT-°(T,s) is the standard-state free-energy change in 
forming from reactants the generalized transition state located 
at s. For calculations, rotation and vibration are assumed 
separable, and we include Morse anharmonicity in stretching 
vibrational energies and quartic anharmonicity in bending 
vibrational energies. All vibrational and rotational partition 
functions are evaluated as quantum-mechanical sums with 
zeros of energy at the bottom of the local potential wells. The 
CVT rate constant with classical treatment of reaction-coor­
dinate motion and other degrees of freedom quantized is the 
one that minimizes kGJ(T,s) or maximizes AGGJ-°(T,s) with 
respect to 5. The conventional TST rate constant with a 
transmission coefficient of unity is the one obtained by setting 
s =0 . 

There are still some unsolved problems in trying to treat 
quantal corrections on the reaction-coordinate motion in a 
conventional or generalized TST framework.524'25 These 
difficulties are of a fundamental nature because incorporating 
quantum effects into transition-state theory by quantizing the 
transition state and calculating a transmission coefficient K(T) 
based on a one-dimensional quantal treatment of the reac­
tion-coordinate motion is valid only in a separable approxi­
mation. Nevertheless, in the present paper we include a K(T) 
of this type mainly for the purpose of indicating whether or not 
tunneling is important for a given reaction. For this purpose 
we calculate a semiclassical transmission probability PSAG-
(£rei) for relative translational energy Ere\ for the ground-state 
adiabatic potential energy curve along the minimum-energy 
path. This potential-energy barrier is defined by 

VAG(s) = Ka(a = 0,5) - Ka(a = 0,s = - » ) (3) 

where a denotes the set of quantum numbers for the bound 
degrees of freedom; the adiabatic potential curve is defined 
by 

Va(a,s) = VMEP(S) + eGT
int(a,s) (4) 

and €GTint(a,5) is the internal energy of the bound degrees of 
freedom for the generalized-transition-state dividing surface 
at s. In eq 3, a = 0 denotes the ground state. In this article we 
restrict consideration to systems with collinear minimum en­
ergy paths; for such systems a = 0 implies zero-point energies 
in the stretch and twofold degenerate bend and zero angular 
momentum in rotation and in translational orbital motion. In 
the present study we neglect curvature of the reaction coor­

dinate in calculating PSAG(ETe\). The vibrationally adiabatic, 
ground-state transmission coefficient for canonical variational 
theory is the ratio of the thermally averaged semiclassical 
transmission probability for VAG(s) to the thermal average of 
the classical transmission probability assumed by the uncor­
rected theory. Canonical variational theory with classical re­
action coordinate motion assumes a step function rising to unity 
at £rei equal to VAG[s = sfT(T)], where s^CWT(T) denotes 
the value of the reaction coordinate at the location of the ca­
nonical variational transition state for the temperature T. Thus 
the semiclassical, vibrationally adiabatic, ground-state, 
zero-curvature transmission coefficient for canonical varia­
tional theory is 

JJ d£relFSAG(£rel) exp(-£re,/fcBr) 

KCVT/SAG(7) = 

£AG [ j ,CVTm ]
d £" i e XP<-£ r e l /*B 7 '> 

(5) 

For brevity we do not include reminders in the superscript that 
we are using the minimum-energy path (MEP) and the zero-
curvature (ZC) approximation in calculating the transmission 
coefficient. However, such a reminder may be useful if one 
compares the present treatment to others. Notice that the in­
tegration in the numerator extends from zero to infinity, in­
dicating that barrier tunneling and nonclassical barrier re­
flection are included in KCVT/SAG(T). Notice that PSAG(ETe\) 
does not tend in the classical limit to a step function at ETe\ 
equal to VA0[s^CVT(T)], but rather it tends to a step function 
at £rei equal to the maximum of VAG(s). In the vibrationally 
adiabatic separable approximation, systems with energies 
between these two values would be classically transmitted at 
the canonical variational transition state but reflected at the 
vibrationally adiabatic barrier maximum. Thus- KCVT/SAG 
includes not only a semiclassical approximation to quantal 
tunneling and nonclassical reflection but also the effects of 
classical recrossing; all three effects are included in a vibra­
tionally adiabatic separable approximation. 

To calculate the transmission coefficient KCVT/SAG(r) it is 
necessary to first obtain the ground-state adiabatic barrier 
KAG(i). The method for obtaining the potential energy, Morse 
parameters and energy levels for the stretching degree of 
freedom, and harmonic and quartic force constants, effective 
mass, and energy levels for the bending degree of freedom are 
given in ref 6. The ground-state adiabatic curve is then just the 
sum of the potential energy along the minimum-energy path 
and the ground-state energies of the stretch and twofold-de­
generate bend. Values of VAG(s) were computed at intervals 
along the reaction coordinate and then represented by spline 
fits. The spline fits were then used in obtaining PSAG(ETe\). The 
techniques used for the semiclassical approximation to the 
quantal transmission probability for a given barrier and for the 
integration in eq 5 are explained elsewhere.26 

To calculate the canonical variational rate constant we used 
the free-energy formulation indicated in eq 2. Details of the 
calculation of the free-energy change AGGT '°(7» and location 
of its maximum can be found in ref 6. 

To interpret the results we will divide the effects into ener­
getic and entropic ones. Although the bound degrees of free­
dom are quantized, we still find it most illuminating to consider 
the energetic contribution to the free energy of the dividing 
surface to be the energy at the minimum of the classical po­
tential energy for the dividing surface and to consider all other 
effects (i.e., changes in partition functions with the zero of 
energy at the classical potential energy minimum) to be en-
tropic effects. Thus entropic effects in this context reflect any 
changes in force constants and moments of inertia, not just 
those that reflect a change in the effective number of occupied 
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states. An alternative interpretation would be to discuss 
changes in zero-point energies as an energetic effect. The 
present mode of discussion, however, allows for a clearer un­
derstanding of the factors which make the variational theory 
differ from the conventional. 

III. Systems Studied 

We selected a representative set of systems based on our 
experience6,7 applying the CVT to thermal rate constants 
without isotopic substitution. In all cases the potential-energy 
surface is mimicked by an extended modified bond-energy 
bond-order method (BEBO) (patterned on the methods of 
Johnston and Parr27 and Mayer, Schieler, and Johnston28) 
which is explained elsewhere.6-7 Although this model does not 
predict quantitatively accurate potential-energy surfaces (no 
practical model does), it does predict realistic ones which are 
widely used for the correlation and prediction of kinetic data.29 

For our purposes, the BEBO method is sufficient to generate 
a set of realistic surfaces with a simple physical interpretation 
in order to survey the effects of varying the location of the di­
viding surface. The data used for the present BEBO calcula­
tions are tabulated elsewhere.27,30 

To emphasize that the present study is for model reactions, 
we consider the BEBO potential surface for C + HC. The 
physical model employed in the BEBO method is most ap­
propriate for a singly valent doublet atom reacting with a 
closed shell singlet molecule, but there is no three-body reaction 
with masses 12,1, and 12 that has a singly valent doublet atom 
approaching a closed-shell singlet diatom. The BEBO potential 
surface for C + HC has a 12.7 kcal/mol barrier and is rea­
sonably representative of the three-body part of the CH3 + H-
CH3 reaction. However, the C + HC model considered here 
is treated consistently as a three-body reaction and simply 
represents the interesting case of a hydrogen atom transferred 
in a symmetric way between two heavier fragments on a po­
tential surface with a simple symmetric barrier. Similar re­
marks apply to the other cases considered here. Taken as a 
group the 19 model reactions and isotopic analogues considered 
here span a wide range of combinations of masses and realistic 
surface types. Thus the present work provides a survey of 
possibilities which should be considered in assessing the im­
portance of variational optimization of the transition-state 
dividing surface for kinetic isotope effects in three-body re­
actions. The results are also relevant to many atom-transfer 
reactions involving more than three atoms because in many 
cases the three-body part involved in bond breaking and bond 
making plays the dominant role. 

IV. Results 

A survey of hydrogen atom isotope effects for 17 reactions 
is provided in Table I. As an indication of the importance of 
variational determination of the location of the generalized 
transition state, we have tabulated the ratio ku*(T)/kDCYT(T) 
of conventional to canonical variational transition state theory 
rate constants for the deuterium-substituted reactions. Also 
tabulated are the KIEs predicted by conventional transition 
state theory, canonical variational theory, and canonical var­
iational theory with the semiclassical vibrationally adiabatic 
ground-state transmission coefficient. The table is arranged 
with the systems with the most symmetrically located saddle 
points entered first. Tables II and III contain analogous results 
for the carbon-12/14 and chlorine-35/37 isotope effects. To 
help explain the effects of generalized transition state theory 
upon KIEs, Table IV contains details for some of the reactions 
of the generalized transition state located at the saddle point 
and also at the CVT transition state for 600 K. For each gen­
eralized transition state in this table we give the bond order «AB 
of the new bond, the harmonic frequencies oje and c^ of the 
stretching and bending degrees of freedom, respectively, values 

Table I. Deuterium Kinetic Isotope Effects at 300, 600, and 
1000 K" 

system 
A + BC 

C + HC 

O + HO 

C + H2 

14C + H 2 

H + HO 

C + HO 

C + FH 

Cl+ CH 

Br+ NH 

H + HF 

Li+ HO 

Cl+ HO 

Li+ HI 

Cl + ClH 

Cl+ IH 

F + ClH 

I+ IH 

I+ HBr 

7\ K 

300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 
300 
600 
1000 

kD*/ 
£D C V T 

3.79 
2.34 
2.15 
24.65 
5.78 
3.77 
2.98 
1.80 
1.58 
3.08 
1.84 
1.60 
1.48 
1.18 
1.09 
1.25 
1.10 
1.05 
1.02 
1.04 
1.07 
1.00 
1.01 
1.03 
1.02 
1.04 
1.07 
1.07 
1.13 
1.19 
1.11 
1.15 
1.21 
1.53 
1.73 
1.93 
1.41 
1.77 
2.31 
1.22 
1.36 
1.49 
1.32 
1.50 
1.67 
1.56 
1.85 
2.12 
1.36 
1.55 
1.73 
1.94 
2.42 
2.91 

kH*l 
ko* 

4.83 
2.36 
1.76 
9.40 
3.19 
2.06 
4.94 
2.69 
1.94 
4.93 
2.70 
1.95 
1.01 
1.27 
1.33 
0.96 
1.00 
1.03 
8.36 
2.85 
1.81 
5.48 
2.36 
1.71 
7.85 
2.86 
1.94 
0.82 
1.12 
1.24 
3.67 
1.89 
1.39 
1.39 
1.19 
1.11 
2.02 
1.39 
1.19 
7.30 
2.73 
1.89 
4.80 
2.23 
1.71 
7.30 
2.73 
1.89 
4.81 
2.23 
1.72 
1.23 
1.10 
1.05 

A:H C V T/ 
* D

C V T 

0.74 
0.90 
0.92 
0.74 
0.89 
0.93 
1.85 
1.71 
1.54 
1.88 
1.73 
1.56 
0.79 
1.14 
1.25 
1.00 
1.05 
1.02 
5.63 
2.16 
1.39 
4.79 
1.96 
1.28 
6.70 
2.07 
1.16 
0.81 
1.13 
1.25 
3.44 
1.81 
1.34 
1.30 
1.14 
1.07 
1.92 
1.29 
1.10 
7.30 
2.73 
1.90 
4.79 
2.23 
1.70 
7.29 
2.73 
1.89 
4.80 
2.23 
1.70 
1.20 
1.09 
1.04 

£ HCVT/SAG/ 

JtDCVT/SAG 

0.93 
0.95 
0.94 
0.77 
0.90 
0.93 
4.46 
2.17 
1.68 
4.49 
2.19 
1.70 
1.10 
1.23 
1.29 
1.16 
1.09 
1.03 
7.42 
2.33 
1.45 
5.24 
1.93 
1.19 
6.56 
1.92 
1.05 
0.89 
1.17 
1.28 
3.50 
1.83 
1.36 
1.34 
1.19 
1.10 
1.97 
1.27 
1.18 
7.60 
2.78 
1.92 
4.91 
2.26 
1.68 
7.53 
2.79 
1.93 
4.93 
2.26 
1.67 
1.26 
1.14 
1.08 

" For reactions with more than one hydrogen, the isotope effect is 
for replacement of both hydrogens with deuteriums. 

f/MEp(*) of the potential along the minimum-energy path 
relative to the bottom of the reactant potential well, and the 
value VAG(s) of the vibrationally adiabatic potential curve 
relative to the zero-point energy of the reactants. Also tabu­
lated for 600 K are the ratios of the conventional and CVT 
partition functions for the bending, rotational, and stretching 
degrees of freedom, the ratio of the Boltzmann factors for the 
potential energy at the saddle point and at the CVT transition 
state, as well as the ratio of conventional and CVT rate con­
stants. This ratio of rate constants is the product of the previous 
four factors, and is also given for temperatures of 200 and 1000 
K. 
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Figure 1. Classical potential energy barrier, ground-state zero-angular-
momentum adiabatic potential energy barrier, and generalized free energy 
of activation curves as functions of reaction coordinate s for the reaction 
C + HC — CH + C and its isotopic variant C + DC — CD + C. For all 
three types of curves the solid curves are for the H isotope and the dashed 
curves are for the D isotope. The lowest pair of curves are the classical 
potential energy barriers with zero of energy taken at the bottom of the 
reactant well. These curves differ slightly for the two isotopic variants 
because the reaction coordinate is measured along the minimum-energy 
path for the corresponding isotope-dependent scaled and skewed coordinate 
system in each case. The two higher curves on the lower portion of the 
figure are the ground-state, zero-angular-momentum adiabatic potential 
curves Ka(a = 0,5). The two curves in the upper portion of the figure are 
the generalized free energy of activation curves for a temperature of 1000 
K and a standard state of 1 cm3/molecule. Note that the ground-state 
adiabatic curves are the free energy of activation curves for a temperature 
of 0 K. The dotted vertical line at s = 0 indicates the saddle point; the 
dotted lines in the lower panel indicate the maxima in the ground-state, 
zero-angular-momentum adiabatic potential curves, and the dotted lines 
in the upper panel indicate the maxima in the free energy of activation 
curves for 1000 K. For this symmetric reaction as well as the symmetric 
O + HO reaction there are two identical maxima in the ground-state ad­
iabatic curves and the free energy of activation curves. For each of Figures 
1-10, the reaction A + BC is thermoneutral or endothermic, and the curves 
are plotted as a function of the square root of the distance along the re­
action coordinate. The range of reaction coordinate was chosen such that 
the values of the ground-state, zero-angular-momentum adiabatic potential 
curves at the boundaries differ from the asymptotic values by less than a 
specified amount. For this figure, the ground-state, zero-angular-mo­
mentum adiabatic potential curves at the boundaries differ from the as­
ymptotic values by less than 1.5 X 1O-4 hartree. 

Figures 1-10 compare the potential-energy curves, adiabatic 
potential curves, and generalized free energy of activation 
curves at T = 1000 K for ten reactions (solid curves) and their 
deuterium-substituted variants (dashed curves). The dashed 
vertical lines indicate the location of the saddle point (5 = 0), 
the maxima of the adiabatic potential curves, and the maxima 
of the free-energy curves. 

Tables V and VI give further details of the factors which 
contribute to the kinetic isotope effects for the reactions con­
tained in Table IV. These factors are described in section V. 

Table VII is a test of the Swain-Schaad equation. This 
equation was originally derived for reactions of the form 

A + HX — AH + X 

where at least one of X and A is heavy, and H is 1H, D, or T. 
Using conventional transition state theory and assuming that 
all differences except zero-point energy are negligible, Swain 

Table II. Carbon-14 Kinetic Isotope Effects at 300, 600, and 
1000 K" 

system 
A + BC 

C * + HC 

C* + 
HC* 

Cl + 
C*C1 

C * + H 2 

C * + D2 

C * + HO 

C * + FH 

Cl + C*H 

O + ClC* 

r, K 

300 
600 

1000 
300 
600 

1000 
300 
600 

1000 
300 
600 

1000 
300 
600 

1000 
300 
600 

1000 
300 
600 

1000 
300 
600 

1000 
300 
600 

1000 

kc*/ 
*c* C V T 

27.95 
6.60 
4.35 

30.52 
7.01 
4.58 
1.56 
1.58 
1.64 
8.07 
2.86 
2.00 
3.08 
1.84 
1.60 
1.20 
1.07 
1.03 
1.62 
1.42 
1.44 
1.22 
1.29 
1.43 
1.19 
1.31 
1.42 

kc*/ 
kc** 

0.981 
0.998 
1.002 
0.986 
1.003 
1.004 
1.128 
1.084 
1.074 
1.013 
1.012 
1.012 
1.012 
1.015 
1.016 
1.080 
1.063 
1.056 
1.008 
1.026 
1.031 
1.050 
1.045 
1.042 
1.126 
1.081 
1.070 

fccCVT/ 
A:C.CVT 

1.113 
1.077 
1.063 
1.221 
1.149 
1.122 
1.010 
0.999 
0.996 
1.029 
1.020 
1.016 
1.046 
1.032 
1.028 
1.064 
1.055 
1.052 
1.075 
1.066 
1.063 
1.120 
1.103 
1.093 
1.126 
1.081 
1.070 

£ CVT/SAG/ 

£C.CVT/SAG 

1.108 
1.075 
1.062 
1.258 
1.157 
1.125 
1.012 
1.001 
0.999 
1.027 
1.020 
1.016 
1.034 
1.029 
1.026 
1.052 
1.052 
1.051 
1.066 
1.062 
1.060 
1.116 
1.093 
1.076 
1.128 
1.081 
1.072 

" kc is the rate constant with all carbon atoms 12C; kc* is the rate 
constant with those carbon atoms marked C* replaced by 14C. 

Table III. Chlorine Kinetic Isotope Effects at 300, 600, and 
1000 K a 

system 
A + BC 

Cl* + CCl 

Cl* + 
CCl* 

Cl* + CH 

Cl* + HO 

O + C1*C 

Cl* + 
C1*H 

Cl* + IH 

F + C1*H 

7-,K 

300 
600 

1000 
300 
600 

1000 
300 
600 

1000 
300 
600 

1000 
300 
600 

1000 
300 
600 

1000 
300 
600 

1000 
300 
600 

1000 

* 3 7 C 1 * / 
fc37C1CVT 

1.79 
1.75 
1.80 
1.80 
1.76 
1.82 
1.16 
1.23 
1.38 
1.64 
1.81 
2.01 
1.19 
1.31 
1.42 
1.22 
1.36 
1.49 
1.32 
1.50 
1.69 
1.56 
1.84 
2.11 

kisa*/ 
knc\* 

1.000 
1.002 
1.002 
1.007 
1.005 
1.004 
0.996 
1.000 
1.001 
1.004 
1.007 
1.007 
1.001 
1.003 
1.003 
0.990 
0.998 
1.000 
0.994 
0.999 
0.999 
0.996 
1.000 
1.000 

* 3 5 C 1 C V T / 

* 3 7 C 1 C V T 

1.026 
1.022 
1.021 
1.038 
1.033 
1.031 
1.003 
1.007 
1.009 
1.005 
1.007 
1.008 
1.001 
1.003 
1.003 
0.990 
0.998 
1.000 
0.994 
0.999 
1.000 
0.996 
1.000 
1.000 

Jt3501CVTZSAG/ 

Jt3701CVTZSAG 

1.024 
1.022 
1.021 
1.038 
1.033 
1.031 
1.004 
1.007 
1.008 
1.005 
1.007 
1.008 
1.002 
1.003 
1.003 
0.990 
0.998 
1.000 
0.994 
0.999 
1.003 
0.996 
1.000 
1.001 

" /b5ci is the rate constant with all chlorine atoms 35Cl; &37ci is the 
rate constant with those chlorine atoms marked Cl* replaced by 
37Cl. 

et al.31 obtained the approximate relation 

* I H / * T a (kiH/kD)iM2 = (km/kT)ss (6) 

The identity defined by the second relationship sign in (6) will 
be called the Swain-Schaad prediction of k\n/kj. Notice in 



Table IV. Properties of Generalized Transition States and Ratios of Conventional and CVT Partition Functions 

system 
A + B C 

C + HC 
C + DC 
'4C + HC 
14C + H14C 

Cl + CCI 
Cl + '4CCI 
37CI + CCl 
17CI + C37CI 

C + H2 

C + D2 

'4C + H2 

H + HO 
D + D O 

C + FH 
C + FD 
14C + FH 

C l + CH 
Cl + CD 
Cl + 14CH 
37CI + CH 

C l + HO 
Cl + DO 
37CI + HO 

O + CIC 
0 + Cl14C 
O + 37CIC 

Li + Hl 
L i + Dl 

Cl + CIH 
C l + CID 
37CI + 37CIH 

"AB* 

0.500 
0.500 
0.500 
0.500 

0.500 
0.500 
0.500 
0.500 

0.546 
0.546 
0.546 

0.620 
0.620 

0.811 
0.811 
0.811 

0.852 
0.852 
0.852 
0.852 

0.957 
0.957 
0.957 

0.981 
0.981 
0.981 

0.991 
0.991 

0.992 
0.992 
0.992 

saddle-point properties 

hwc,
c 

cm" ' 

621 
621 
600 
575 

305 
305 
301 
297 

1759 
1246 
1760 

3260 
2274 

1240 
1033 
1225 

761 
719 
746 
757 

3020 
2162 
3018 

861 
861 
854 

1390 
1041 

563 
564 
548 

hub,
d 

cm" ' 

508 
367 
507 
506 

80 
75 
80 
79 

662 
471 
662 

603 
428 

272 
212 
271 

198 
156 
194 
198 

171 
122 
171 

36 
35 
35 

172 
125 

69 
52 
69 

I7MEP/ 
kcal/mol 

12.67 
12.67 
12.67 
12.67 

3.58 
3.58 
3.58 
3.58 

14.60 
14.60 
14.60 

10.79 
10.79 

41.54 
41.54 
41.54 

30.28 
30.28 
30.28 
30.28 

8.65 
8.65 
8.65 

30.65 
30.65 
30.65 

18.85 
18.85 

49.14 
49.14 
49.14 

(/AG(V _ Q ) / 

kcal/mol 

10.94 
11.60 
10.91 
10.89 

3.06 
3.11 
3.05 
3.05 

12.88 
13.36 
12.88 

11.91 
11.41 

38.22 
39.35 
38.20 

27.81 
28.72 
27.81 
27.81 

8.16 
8.22 
8.16 

30.79 
30.86 
30.79 

18.07 
18.37 

45.91 
47.05 
45.89 

"AB* 

0.63 
0.62 
0.62 
0.62 

0.67 
0.67 
0.66 
0.67 

0.40 
0.42 
0.40 

0.71 
0.69 

0.73 
0.78 
0.73 

0.78 
0.84 
0.77 
0.78 

0.86 
0.87 
0.86 

0.95 
0.95 
0.95 

0.85 
0.90 

0.98 
0.98 
0.98 

CVT transition state properties (7" 

hwc.
c 

cm" ' 

2355 
1523 
2370 
2375 

624 
580 
626 
623 

3103 
2037 
3109 

3704 
2547 

1633 
1043 
1662 

954 
705 
988 
958 

3067 
2179 
3066 

849 
849 
842 

1503 
1077 

558 
560 
543 

A u * ' 
cm"1 

498 
360 
497 
497 

77 
73 
77 
77 

673 
479 
672 

586 
419 

300 
220 
299 

222 
160 
220 
222 

258 
182 
258 

44 
44 
44 

288 
195 

92 
69 
91 

^MEP. ' ^ A C | 
kcal/mol 

12.14 
12.19 
12.16 
12.17 

3.37 
3.37 
3.37 
3.37 

13.93 
14.12 
13 94 

10.63 
10.69 

41.10 
41.48 
41.07 

29.90 
30.26 
29.86 
29.89 

8.24 
8.29 
8.24 

30.44 
30.44 
30.44 

17.91 
18.15 

48.90 
48.90 
48.90 

= 600 K) 
[ 5 = 5.CVT(T-Jj/ 

kcal/mol 

12.8 
12.4 
12.8 
12.9 

3.3 
3.3 
3.3 
3.3 

14 1 
14.0 
14.1 

12.3 
11.7 

38.4 
39.3 
38.4 

27.8 
28.7 
27.8 
27.8 

8.1 
8.1 
8.1 

30.6 
30.6 
30.6 

17.6 
17.9 

45.7 
46.8 
45.7 

bends* 

0.96 
0.96 
0.96 
0.96 

0.95 
0.95 
0.95 
0.95 

1.04 
1.04 
1.04 

0.94 
0.96 

1.22 
1.07 
1.23 

1.25 
1.05 
1.27 
1.25 

1.99 
1.92 
1.99 

1.43 
1.43 
1.43 

2.58 
2.22 

1.66 
1.63 
1.66 

T = 600 K 
Q*/QCVT 

rot.* 

0.99 
0.99 
0.99 
0.99 

0.98 
0.98 
0.98 
0.98 

0.96 
0.97 
0.96 

0.95 
0.96 

0.99 
1.00 
0.98 

0.99 
1.00 
0.99 
0.99 

1.20 
1.20 
1.20 

111 

I.Il 
111 

1.42 
1.36 

1.02 
1.03 
1.02 

stretch' 

10.06 
3.67 

10.68 
11.28 

2.19 
2.01 
2.23 
2.25 

4.94 
2.67 
4.95 

1.68 
1.38 

1.65 
1.01 
1.74 

1.35 
0.98 
1.45 
1.37 

1.06 
1.02 
1.06 

0.98 
0.98 
0.98 

1.15 
1.05 

0.99 
0.99 
0.99 

ebV/ktiT 

0.64 
0.67 
0.65 
0.66 

0.84 
0.84 
0.84 
0.84 

0.57 
0.67 
0.58 

0.88 
0.92 

0.69 
0.95 
0.68 

0.73 
0.99 
0.71 
0.72 

0.71 
0.74 
0.71 

0.84 
0.84 
0.84 

0.45 
0.56 

0.81 
0.81 
0.81 

**/*CVT 

6.12 
2.34 
6.60 
7.01 

1.71 
1.58 
1.75 
1.76 

2.84 
1.80 
2.86 

1.32 
1.18 

1.37 
1.04 
1.42 

1.22 
1.01 
1.29 
1.23 

1.81 
1.73 
1.81 

1.31 
1.31 
1.31 

1.91 
1.77 

1.36 
1.36 
1.36 

T =200 K 

k*/kcvT 

116 
7.03 

139 
157 

1.93 
1.66 
1.99 
2.00 

22.7 
5.15 

23.2 

2.72 
1.87 

1.76 
1.02 
1.93 

1.15 
1.00 
1.25 
1.16 

1.59 
1.45 
1.60 

1.14 
1.14 
1.14 

1.38 
1.31 

1.17 
1.17 
1.17 

T= 1000 K 

**/*CVT 

4.10 
2.15 
4.35 
4.58 

1.77 
1.64 
1.80 
1.81 

1.99 
1.58 
2.00 

1.15 
1.09 

1.39 
1.07 
1.44 

1.37 
1.03 
1.43 
1.38 

2.00 
1.93 
2.00 

1.42 
1.42 
1.42 

2.51 
2.31 

1.49 
1.49 
1.49 

" In all cases reaction occurs with the atom written first in the diatomic. For homonuclear diatomics 
the rate calculated is the sum of the reaction rates with both ends. * Bond order of the new bond. 
c Planck's constant times the vibrational frequency for the stretching degree of freedom. d Planck's 
constant times the vibrational frequency for a single bending degree of freedom. e Classical potential 

energy relative to zero at the bottom of the asymptotic reactant vibrational well, f Value of the 
ground-slate adiabatic potential curve relative to zero at the zero-point vibrational energy of reactants. 
* Square of the ratio of bending partition functions. h Ratio of rotational partition functions. ' Ratio 
of stretching partition functions.' cxp (—[KMEPC? = 0) — KMEP(S = st

CVT)]/kBT\. 
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H + HO 

51 5Jh- ) 

Figure 2. Same as Figure 1 except for the reactions O + HO - • OH + O 
and O + DO -* OD + O. For this figure the values of the adiabatic po­
tential curves at the boundaries differ from their asymptotic values by less 
than 1.5 X 1O-4 hartree. 

Figure 4. Same as Figure 3 except for the reactions H + HO -» H2 + O 
and D + DO -» D2 + O. For this figure the values of the adiabatic po­
tential curves at the boundaries differ from their asymptotic values by less 
than 1.5 X 1O-4 hartree. 

- 4 . 0 -2 .0 2.0 0.0 

SOOHR; 

Figure 3. Same as Figure 2 except for the reactions C-I-H 2 -* CH + H 
and C + D2 - • CD + D. For this figure the values of the adiabatic potential 
curves at the boundaries differ from their asymptotic values by less than 
1.5 X 1O-4 hartree. 

particular that tunneling was neglected in the argument 
leading to (6). Table V presents tritium-protium isotope effects 
calculated by the three theories considered here and in each 
case compares them to the prediction of the Swain-Schaad 
relation. 

V. Discussion 
The first two reactions in Table I show dramatic effects of 

the variational optimization of the location of the generalized 
transition state. For example, for C + HC at 300 K, the vari­
ational optimization lowers the rate constant by a factor of 
24.7. In contrast the rate constant for C + DC is lowered by 

126 

122 

110 

• 16 

u 12 -

en 8 -

T = 1000 K C 

I 
//' 

T \ C + HO 

~ 

1 . . , 

-4 .0 -2 .0 0.0 

5 : B u H R ) 

Figure 5. Same as Figure 4 except for the reactions C + HO -*• CH + O 
and C + DO - • CD + O. For this figure the values of the adiabatic po­
tential curves at the boundaries differ from their asymptotic values by less 
than 1.5 X 1O-4 hartree. 

"only" a factor of 3.8. The ratio of these changes is larger than 
the conventionally predicted KIE of 4.8; hence the CVT with 
unit transmission coefficient predicts an inverse isotope effect. 
Inclusion of a semiclassical tunneling correction based on the 
ground-state adiabatic potential curve changes the prediction 
to a value close to unity. A more accurate tunneling correction 
might well restore the normal isotope effect since the vibra­
tional^ adiabatic method with zero curvature is known24'32-34 

to sometimes underestimate the extent of tunneling. The 
quantitative prediction that the isotope effect in the absence 
of tunneling would actually be inverse may also be sensitive 
to the details of the potential-energy surface. But one quali-
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H + HF 
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- 4 . 0 -2 .0 
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BOHR) 

2.0 4.0 

Figure 6. Same as Figure 5 except for the reactions H + HF -» H2 + F 
and D + DF -• D2 + F. For this figure the values of the adiabatic potential 
curves at the boundaries differ from their asymptotic values by less than 
1.5 X 1O-4 hartree. 

5:30HR. 

Figure 8. Same as Figure 7 except for the reactions Cl + HO -» ClH + 
O and Cl + DO — ClD + O. For this figure the values of the adiabatic 
potential curves at the boundaries differ from their asymptotic values by 
less than 3 X 10-4 hartree. 
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Li+HO 
. , 1 . , . 
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2.0 

Figure 7. Same as Figure 6 except for the reactions Li + HO -» LiH + 
O and Li + DO -» LiD + O. For this figure the values of the adiabatic 
potential curves at the boundaries differ from their asymptotic values by 
less than 1.0 X 10-3 hartree. 

tative fact is very clear, namely, that variation optimization 
of the location of the generalized transition state can have large 
effects on KIEs. 

The fact that the change in the KIE is larger for the first two 
reactions in Table I than any of the others can be explained in 
terms of the effect of skew angle on the location of the varia­
tional transition state. In our general surveys of the effects on 
predicted rate constants of variational determination of gen­
eralized transition state locations, we have found that the 
largest effects of variational location of the generalized tran­
sition state are associated with reactions with symmetric and 
nearly symmetric saddle points, and the effects in such cases 

si BOHP; 

Figure 9. Same as Figure 8 except for the reactions Li + HI -* LiH + I 
and Li + DI -» LiD + I. For this figure the values of the adiabatic potential 
curves at the boundaries differ from their asymptotic values by less than 
1.0 X IO-3 hartree. 

are dominated by the stretching degree of freedom.6'7 Small 
skew angles are associated with a light atom being transferred 
between two heavy subsystems.35 In such a case, if coordinates 
are not scaled, the reduced mass associated with the stretching 
degree of freedom increases greatly as the system proceeds to 
a symmetric or nearly symmetric geometry. Alternatively, if 
the coordinates are all scaled to the same reduced mass, the 
force constant decreases for symmetric or nearly symmetric 
geometries. In either coordinate system, the stretching fre­
quency is much smaller for symmetric or nearly symmetric 
geometries than for reactants. Consider, as an example, the 
reaction C + HC. The stretching vibration is initially a hydride 
vibration with we = 2912 cm-1, At the symmetric saddle point, 
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Table V. Factors Contributing to Deuterium Kinetic Isotope Effects at 600 K 

isotope effect 

C + HC/C + DC 

C + H2/C + D2 

H + HO/D + DO 

C + FH/C + FD 

C1 + CH/C1 + CD 

Cl + HO/C1 + DO 

Li + HI/Li + DI 

C1 + C1H/C1 + C1D 

translation" 

1.05* 
1.05* 
2.31 
2.31 
2.63 
2.63 
1.03 
1.03 
1.08 
1.08 
1.06 
1.06 
1.00 
1.00 
1.02 
1.02 

rotation* 

1.84 
1.85 
1.10 
1.12 
1.03 
1.05 
1.60 
1.63 
1.52 
1.53 
1.87 
1.86 
1.89 
1.82 
1.69 
1.72 

stretchc 

2.50 
0.92 
2.36 
1.27 
1.04 
0.86 
2.89 
1.78 
2.33 
1.69 
1.20 
1.16 
1.41 
1.28 
2.73 
2.73 

bend d 

0.48 
0.49 
0.45 
0.45 
0.45 
0.46 
0.60 
0.53 
0.62 
0.52 
0.50 
0.48 
0.52 
0.45 
0.58 
0.57 

energye 

1.00 
1.04 
1.00 
1.17 
1.00 
1.05 
1.00 
1.38 
1.00 
1.35 
1.00 
1.04 
1.00 
1.23 
1.00 
1.00 

net-/" 

2.36 
0.90 
2.69 
1.71 
1.27 
1.14 
2.85 
2.16 
2.36 
1.96 
1.19 
1.14 
1.39 
1.29 
2.73 
2.73 

" * r e l , D R ( 7 1 / * r e l , H R m . * SrOt1H0"^ 7 > H ) e r o . , D R ( 7 " ) / e r c . D G T ( 7 > D ) ( 2 r o t , H R ( F ) . C QStr,HGT(T,SH)Q^DHT)/Qslr,DanT.So)Q^,HK(T). 
d{Qb,HGJ(T,SH)]2/[Qb,DGT{T,sD)]2. <• exp{[VMEP{sD) - VMEP(sH)]/kBT}- for 5H = *D = 0 this factor is unity./ *H

GT(r,JH)/*DGT(r.sD). 
1 Upper entries are for the conventional location of the dividing surface, i.e., SH = ^D = 0. * Lower entries are for the canonical variational 
location of the dividing surface, i.e., s\\ = •s*,HCVT(7'), sD = S*,DCVT(T). 

point (location of maximum classical potential energy). Since 
the decrease in o>e for the stretching vibration is 2291 cm-1 for 
C + HC but only 1517 cm - ' for C + DC, the entropic effect 
competes with the energetic effect more easily in the former 
case, and the variational lowering of the predicted rate constant 
is greater for the hydride than for the deuteride. At their var­
iational transition states the values of o)e are 2355 cm"1 for C 
+ HC and 1523 cm"1 for C + DC (see Table IV). As com­
pared to reactants this represents lowerings of 557 and 615 
cm"1, respectively, and the lowerings are actually ordered 
opposite to their values at the conventional transition state. 
This invalidates the simple conventional interpretation of the 
isotope effect in this case. In summary, we expect the varia­
tional location of the generalized transition state for symmetric 
hydrogen-atom transfers to be dominated by competition be­
tween the energetic effect and the entropy of the stretching 
degree of freedom. Since the skew angle is smaller for H 
transfer than D transfer, we expect a greater entropic effect 
in the former case. Thus conventional transition state theory, 
which locates the dividing surface entirely based on the ener­
getic criterion, is expected to overestimate the ratio ^ H A D , 
unless there is a competing error caused by tunneling. 

It is interesting to notice the role of the bending frequency 
at the variational transition state on the canonical variational 
prediction that the isotope effect for the model reaction C + 
HC is inverse in the absence of quantum effects on reaction-
coordinate motion. The role of the bending frequency in pro­
ton-transfer reactions has been widely discussed (see, e.g., ref 
10, pp 27-30, and ref 15, pp 242-244) in terms of conventional 
transition state theory. In the example of C + HC with the 
present model potential surface the bending frequencies for 
the conventional and variational (600 K) transition states are 
508 and 498 cm-1, respectively. The same quantities for C + 
DC are 367 and 360 cm - ' . In proceeding to the conventional 
dividing surface, the stretching frequency decreases 2291 cm-1 

for H and 1517 cm -1 for D. This contributes a factor of about 
exp[(2291 - 1517)/2kB7:] = 2.5 to kH/kD. Similarly, in the 
low-temperature harmonic approximation, the bend would 
contribute exp[-(508 - 367)/kBT] = 0.7. Calculating the 
effect of the bend accurately yields 0.5. Since the translational 
partition function is almost the same for the two isotopic 
variations, the conventional prediction of k^/ko is essentially 
a product of three factors: 2.5 from the stretch, 0.5 from the 
bend, and 1.8 from reactant rotation. In general, variational 
optimization of the location of the generalized-transition-state 
dividing surface will decrease the effect on the KIE of the 

Figure 10. Same as Figure 9 except for the reactions 1 + HBr -* IH + Br 
and 1 + DBr -• ID + Br. For this figure the values of the adiabatic po­
tential curves at the boundaries differ from their asymptotic values by less 
than 1.5 X 10-4hartree. 

the hydrogen is stationary and the reduced mass for the bound 
stretching vibration is controlled by the C-C moiety; as a 
consequence 0!e is reduced to 621 cm -1 (see Table IV). For C 
+ DC, o>e is reduced from 2138 cm-1 for reactants to 621 cm-1 

at the saddle point. Figures 1 and 2 show that the shapes of the 
generalized free energy of activation curves are not sensitive 
to temperature in these cases. Thus the generalized free energy 
of activation curves may be explained in terms of the ground 
state vibrationally adiabatic potential curves, which in turn are 
easily explained in terms of o>e as a function of reaction coor­
dinate. When OJe is greatly reduced, the entropy is increased 
(see last paragraph of section II). The entropy increase tends 
to increase the equilibrium flux through a generalized transi­
tion state dividing surface and to compete with the energy in­
crease which occurs on proceeding to symmetric configura­
tions. As a result the variationally best generalized transition 
state is located at the best compromise location (location of 
maximum free energy) rather than at the symmetric saddle 
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Table VI. Factors Contributing to Heavy-Atom Kinetic Isotope Effects at 600 K 

isotope effect translation" rotation4 stretch' bend0 
energy* net/ 

14C + HC/C + HC 

14C + H14C/C + HC 

Cl + 14CC1/C1 + CCl 

37Cl + CC1/C1 + CCl 

37Cl + C37C1/C1 + CCl 

14C + H2/C + H2 

14C + FH/C + FH 

Cl + 14CH/C1 + CH 

37Cl + CH/C1 + CH 

37Cl + HO/C1 + HO 

o + ci14c/o + cic 

o + 37cic/o + cic 
37Cl + 37C1H/C1 + ClH 

1.123* 
1.123* 
1.250 
1.250 
1.027 
1.027 
1.048 
1.048 
1.077 
1.077 
1.032 
1.032 
1.151 
1.151 
1.166 
1.166 
1.022 
1.022 
1.027 
1.027 
1.016 
1.016 
1.016 
1.016 
1.086 
1.086 

0.928 
0.928 
0.866 
0.867 
1.119 
1.119 
0.973 
0.973 
0.959 
0.959 
0.981 
0.981 
0.918 
0.917 
0.933 
0.930 
0.986 
0.986 
0.983 
0.983 
1.016 
1.020 
1.014 
1.014 
0.955 
0.954 

0.960 
1.019 
0.932 
1.045 
1.075 
0.988 
0.986 
1.003 
0.980 
1.007 
1.002 
1.007 
0.979 
1.036 
0.994 
1.071 
0.993 
1.005 
0.998 
0.999 
1.075 
1.076 
0.998 
0.998 
0.971 
0.971 

0.997 
0.999 
0.993 
0.995 
0.877 
0.878 
0.996 
0.997 
0.992 
0.992 
0.998 
0.998 
0.991 
0.998 
0.967 
0.977 
0.999 
1.001 
0.999 
1.000 
0.974 
0.970 
0.976 
0.976 
0.991 
0.992 

1.000 
1.105 
1.000 
1.019 
1.000 
1.002 
1.000 
1.003 
1.000 
1.001 
1.000 
1.003 
1.000 
0.978 
1.000 
0.973 
1.000 
0.993 
1.000 
0.999 
1.000 
1.001 
1.000 
1.000 
1.000 
1.000 

0.998 
1.077 
1.003 
1.149 
1.084 
0.999 
1.002 
1.022 
1.005 
1.033 
1.012 
1.020 
1.026 
1.066 
1.045 
1.103 
1.000 
1.007 
1.007 
1.007 
1.081 
1.081 
1.003 
1.003 
0.998 
0.998 

"~h See Table V. 

Table VII. Test of the Swain-Schaad Equation (6) at 300 and 600 K 

reaction 
A+ BC T, K kn*/kT* 

(*H*/ 
£T*)SS Tcvr 

( * H C V T / 
*T C V T )SS 

Jt11CVTZSAG/ 
kTCVT/SAG 

( * H C V T / S A G / 
^xCVTZSAG)58 

C + HC 

O + HO 

C + HO 

Li+ HO 

Cl+ HO 

Li+ HI 

I + HBr 

300 
600 
300 
600 
300 
600 
300 
600 
300 
600 
300 
600 
300 
600 

9.78 
3.47 

25.29 
5.33 
1.03 
1.07 
6.56 
2.47 
1.60 
1.29 
2.82 
1.62 
1.34 
1.15 

9.69 
3.44 

25.31 
5.32 
0.95 
1.05 
6.52 
2.50 
1.61 
1.29 
2.76 
1.61 
1.34 
1.15 

0.74 
0.90 
0.68 
0.86 
1.05 
1.08 
6.01 
2.32 
1.45 
1.21 
2.64 
1.46 
1.31 
1.14 

0.65 
0.86 
0.65 
0.84 
1.00 
1.07 
5.93 
2.35 
1.45 
1.21 
2.57 
1.44 
1.31 
1.14 

1.03 
0.98 
0.72 
0.87 
1.33 
1.15 
6.17 
2.37 
1.54 
1.28 
2.74 
1.43 
1.40 
1.21 

0.90 
0.93 
0.69 
0.86 
1.25 
1.13 
6.08 
2.39 
1.53 
1.28 
2.66 
1.41 
1.40 
1.21 

stretching degree of freedom for symmetric and nearly sym­
metric reactions; then the bend degree of freedom, which favors 
&D > &H, rnay become the determining factor. The present case 
provides an even more dramatic example than one might ex­
pect in general. In particular, in proceeding from the reactants 
to the canonical variational dividing surfaces, not only does the 
bending frequency increase more for ' H than for 2H, but also 
the stretching frequency decreases less. Thus, in this case, both 
degrees of freedom contribute to the prediction that, in the 
absence of tunneling, the isotope effect is inverse. Notice that, 
if the dividing surfaces for both isotopes had the same location, 
it would be impossible for the stretching entropic effect to favor 
^H < ^D (assuming, as is almost certainly the case, that the 
stretching force constant is less at the dividing surface than for 
reactants). The crucial new element of variational transition 
state theory is that we must consider force-constant changes 
and geometry changes as well as changes of mass. 

The small isotope effects predicted by CVT for the sym­
metric hydrogen-atom transfers deserve some further comment 
because they seem to be contrary to some experimental expe­
rience. There are several considerations to keep in mind in this. 

regard. The crucial point is that the present calculations show, 
for some potential-energy surfaces in the absence of tunneling 
corrections, that CVT predicts quite different KIEs than 
conventional transition state theory. The fundamental as­
sumption of transition-state theory is that there is no recrossing 
of the transition state dividing surface. CVT actually locates 
the dividing surface which is dynamically crossed least (and 
therefore recrossed least), whereas conventional transition state 
theory locates this dividing surface by an a priori energetic 
criterion. Therefore CVT is a more consistent theory within 
the framework of equilibrium reaction rate theories. Therefore, 
even if conventional transition state theory might correlate 
some subset of experimental data more easily, one wants to 
explain why. The reasons for particular cases might be one or 
more of the following: (1) compensation of errors caused by 
the transition state theory treatment of quantal effects, espe­
cially tunneling; (2) real potential energy surfaces for some 
reactions being qualitatively different from those assumed 
here; (3) an incorrect mechanism being used to interpret some 
experimental results. Although it would be inappropriate to 
review the whole relevant literature here, we will next briefly 



2568 Journal of the American Chemical Society / 102:8 / April 9, 1980 

summarize the considerations relevant to points (1 )-(3). We 
leave it to future work to make applications to specific sys­
tems. 

(1) There is no proven theory available for treating tunneling 
in small-skew-angle systems. The vibrationally adiabatic 
ground state tunneling correction employed in this paper is 
known to generally underestimate the effect of tunneling. More 
accurate theories of tunneling have been proposed by Marcus 
and Coltrin36 and Miller et al.37 We have applied these theories 
to several of the cases studied here, and they generally predict 
more tunneling than the model used for the numerical results 
here. However, they do not lead to large changes in the pre­
dicted deuterium-protium KIEs for C + HC and O + HO. 
Thus we will not present these results here in detail. Although 
these newer methods are generally more reliable than the 
minimum-energy-path zero-curvature model used for tun­
neling here, they are probably not reliable for small-skew-angle 
systems.38 For such systems the whole notion of treating the 
minimum-energy path as the reaction coordinate or as a 
zero-order reaction coordinate begins to break down. Thus in 
particular the treatment of degrees of freedom transverse to 
this path as adiabatic with respect to this path breaks down. 
Therefore the quantum numbers and quantized energies of the 
transverse stretch may be less meaningful for this kind of 
system than for the other systems treated here. In other words, 
we cannot separate tunneling (quantal effects on reaction 
coordinate motion) from classical and quantal manifestations 
of vibrational nonadiabaticity for this kind of system. Thus 
both conventional transition state theory and CVT suffer from 
particularly serious nonseparability of reaction-coordinate 
motion for small-skew-angle systems. Within the generalized 
transition state theory framework, however, CVT is probably 
to be preferred on theoretical grounds. First, it is more con­
sistent with the fundamental no-recrossing assumption as 
discussed above. Second, it tends to locate the transition state 
dividing surface farther from the highest curvature part of the 
minimum-energy path and thus the breakdown of the non-
separability assumption should be less severe than for the 
conventional theory. Further work on quantal effects, both 
separable and nonseparable, is required to treat this kind of 
system with confidence. We are currently carrying out a test 
of the CVT for T + HD,39 which is a small-skew-angle system 
for which tests against accurate quantal calculations are fea­
sible. We hope that this and future work will lead to a better 
understanding of small-skew-angle systems. 

(2) The set of potential-energy surfaces used here predicts 
large errors in conventional transition state theory for small-
skew-angle systems. We have explored other semiempirical 
potential energies in unpublished work and the effects are 
sometimes greater and sometimes less than for BEBO surfaces. 
An ab initio study of the Cl + HCl system is underway,40 and 
we hope that it will be more definitive, at least for Cl + HCl. 
The present study does indicate, however, that it is unsatis­
factory to simply interpret the KIE by a model involving con­
ventional transition state theory without questioning the sta­
bility of the treatment with respect to varying the location of 
the dividing surface for the particular potential-energy surface 
involved. 

(3) Once it is recognized that symmetric saddle points do 
not have to lead to large KIEs for hydrogen or proton transfer, 
some experimental measurements of small KlEs that are in­
terpreted in terms of more complicated mechanisms, e.g., 
additional metastable intermediates, might receive alternative 
interpretations in terms of simple symmetric barrier geome­
tries. Then additional experiments or calculations might be 
required to make a definitive interpretation in particular 
cases. 

Conventional TST for H-atom transfers predicts a minimum 
primary H/D isotope effect for a very asymmetric (reactant-

like or product-like) transition state and a maximum isotope 
effect for a very symmetric transition state. We have just seen 
that canonical variational theory predicts a small isotope effect 
for the present BEBO potential energy surfaces for symmetric 
reactions like C + HC and O + HO. Notice, however, that the 
prediction occurs because the variational state is not sym­
metric. For the symmetric choice of dividing surface these 
potential-energy surfaces exhibit the usual prediction for the 
isotope effect. The Melander-Westheimer correlation of small 
isotope effects and asymmetric transition states is so commonly 
applied that this result is very important. Such correlations, 
which are widespread in the literature, may require reinter-
pretation. In particular the implication of a small isotope effect 
may be that the variational transition state (free-energy 
maximum) is asymmetric, as opposed to the usual interpre­
tation that the conventional transition state (classical potential 
energy maximum) is asymmetric. The point most worth em­
phasis is not the fact that the present BEBO formalism for 
potential-energy surfaces leads to small canonical variational 
isotope effects for the particular reactions C + HC and O 4-
HO, but rather that there exist realistic potential surfaces and 
mass combinations such that canonical variational theory 
predicts a small isotope effect even when the maximum in the 
classical potential energy along the reaction coordinate occurs 
at a symmetric position. There exist other cases, e.g., the H + 
H2 reaction on the surface of Porter and Karplus,41 where the 
canonical variational theory predicts the same isotope effect 
for perdeuteration at 300 K as does conventional transition 
state theory. Thus there also exist cases where the deviation 
of the prediction of canonical variational theory from con­
ventional transition state theory is quantitatively important 
but less dramatic than for the present surface for C + HC. 

The 14C isotope effect for the C + HC reaction is also sen­
sitive to variational location of the dividing surface. Table IV 
shows that at the saddle point we is 46 cm -1 higher for 
12C1H12C than for 14C1H14C. The difference in reactants is 
only 16 cm-1; therefore, the 14C reaction is faster according 
to conventional transition state theory. However, at the vari­
ational transition states for 600 K, o>e is actually 20 cm-1 lower 
for the '2C isotope. This reverses the direction of the predicted 
isotope effect (see Table II). 

Although it is not a symmetric system, C + H2 shows effects 
which are analogous to those for C + HC. See, e.g., Figure 3 
and Table IV. Tables I and IV show that at low temperature 
conventional transition state theory predicts a normal isotope 
effect with protium reacting faster than deuterium because of 
the larger zero-point energy of reactants and hence the larger 
release of stretching energy for the protium case. However, the 
same factor, the larger stretching frequencies for the protium 
reaction, also allows for a greater diminution of the calculated 
rate when the dividing surface is varied and thus allows ca­
nonical variational theory to decrease the predicted isotope 
effect. In C + H2, unlike C -I- HC, the translational partition 
function makes an important contribution to the isotope effect; 
it contributes 2.31 to kn/ku at any temperature. At low 
temperature, Table I shows that the net effect of vibrations and 
rotations is to increase &H/&D in the conventional theory. In 
particular the stretching, bending, and rotational degrees of 
freedom contribute factors of 2.36, 0.45, and 1.10. But in ca­
nonical variational theory kn/ko is less than 2.31. The con­
tributions to the net KIE of 1.7 at 600 K are as follows: 
translation, 2.31; stretch, 1.27; bend, 0.45; rotation, 1.12; 
classical potential energy, 1.17. Clearly the variational effect 
upon the KIE is dominated by competition between the 
stretching entropic effect and the classical potential energy. 
The prediction of the 14C KlE is most sensitive to variational 
optimization of the dividing surface location at low tempera­
ture; e.g., at 300 K such variational optimization changes the 
predicted KIE from 1.013 to 1.029 (with a further change to 
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1.027 when the semiclassical adiabatic ground-state trans­
mission coefficients are included). The change in the heavy-
atom KIE comes about because k*/kCVT is 7.94 for 12C but 
increases to 8.07 for 14C. This is a change of 1.6% and so the 
heavy-atom KIE changes by 1.6%. It is clear that small KIEs 
are particularly vulnerable to this kind of change. 

The KIEs for multiply substituted species can be used to test 
the rule of the geometric mean.15 Table II shows that for the 
C + H2 reaction the 14C KIEs predicted by canonical varia­
tional theory are much more sensitive to deuterium substitution 
than are the 14C KIEs predicted by conventional transition 
state theory. This is a direct consequence of the change in 
geometrical structure and force constants upon deuterium 
substitution. This kind of multiple isotopic substitution, by 
testing the assumptions of the law of the geometric mean, can 
provide a rather direct test of whether the free energy of acti­
vation for the effective transition state for a given reaction is 
drastically different for two isotopic transition states. 

From the preceding discussion it is clear that the effects of 
the different degrees of freedom upon the KIEs can be inter­
preted in terms of five factors involving the ratios of relative 
translational partition functions, rotational partition functions, 
stretching partition functions, bending partition functions, and 
Boltzmann factors for the two isotopes. These ratios are 
summarized for some of the deuterium KIEs in Table V and 
for some of the heavy-atom KIEs in Table VI for both con­
ventional and canonical variational transition state theory at 
600 K. Tables V and VI are arranged with the systems with the 
most symmetrical locations of the saddle points listed first. 

Tables V and VI provide an overall view and a survey of the 
effects, so we will limit our discussion to pointing out the few 
most important trends. Table V shows that for symmetric or 
nearly symmetric systems the major contribution to the deu­
terium KIE comes from the stretching degree of freedom in 
conventional TST. However, variational relocation of the di­
viding surface decreases this contribution. For the reactions 
with very asymmetric saddle points the contribution from the 
stretching degree of freedom is affected only slightly by vari­
ational^ locating the dividing surface. For intermediate cases 
the effect upon the contribution from the stretch to the KIE 
is also intermediate. In these examples contributions to the 
KIEs from rotations always favor &H > ^D and contributions 
to the KIEs from bends always favor k» < &D- Variational 
location of the dividing surface has negligible effect upon these 
ratios. Thus the variational effects to deuterium isotope effects 
are dominated by competition between energetic and stretching 
entropic effects as a general rule. 

Table VI shows that for heavy-atom KIEs for symmetric or 
near-symmetric systems the effect upon the ratio of stretching 
partition functions of variational optimization of the dividing 
surface is just the opposite of that found for deuterium KIEs. 
Again the ratios of rotational partition functions and bending 
partition functions are changed very little by the variational 
procedure. 

In summary we see that the effect upon the KIEs of varia­
tional optimization of the dividing surface is dominated by the 
stretching degree of freedom. Since the variational effects upon 
the stretching degree of freedom are most pronounced for 
systems with symmetric and nearly symmetric saddle points 
we find that the variational effects upon the KIEs are also most 
pronounced for such systems. 

Since the original formulation of the Swain-Schaad equa­
tion, the conditions for its validity, especially in the presence 
of tunneling, have been carefully analyzed in the context of 
conventional transition state theory.42-44 Table VI is an at­
tempt to learn whether the equation still holds approximately 
true when the generalized transition state is relocated varia­
tional^ for each isotope. Table VII shows that the Swain-
Schaad equation predicts canonical variational kw/kj values 

quite well from canonical variational k^/ko values for all 
systems tested here. Without or with the tunneling correction, 
its predictions hold only slightly less well than in conventional 
transition state theory. Another way to test the Swain-Schaad 
equation is to use both /CH/^D and k^/kj to calculate the 
exponent and to see how close the exponent comes to 1.44. The 
equation fares much more poorly on that kind of test, especially 
for C + HC, O + HO, and C + HO. 

VI. Concluding Remarks 

Although kinetic isotope effects involve a ratio of rate con­
stants, the present article shows that canonical variational 
theory sometimes predicts quite different isotope effects than 
conventional transition state theory for realistic potential-
energy surfaces. Prediction of isotope effects for real systems, 
as opposed to the present study of isotope effects for BEBO 
potential-energy surfaces, requires a careful consideration of 
the accuracy of the potential-energy surface. However, the 
BEBO surfaces are realistic enough that the same kinds of 
differences in isotope-effect predictions seen in this work should 
be expected to occur also for some real systems. 

The present results have very important implications for the 
theory of kinetic isotope effects. Kinetic isotope effects are 
almost universally interpreted in terms of conventional tran­
sition state theory. This theory involves the simplifying feature 
that the geometry and force constants of the transition state 
are the same for all isotopic variants of a reaction. The present 
calculations show, however, that, when a generalized transition 
state is defined and its location determined variationally, the 
location is sometimes strongly dependent on isotopic substi­
tution. Thus one must consider not only variations of masses 
but also variations of force constants and bond distances in 
calculating the partition functions for the generalized transition 
states. This considerably complicates the theory and the in­
terpretation of experimental results. This is especially true 
when one tries to use kinetic isotope effects as an indication of 
structure, in particular when one tries to relate kinetic isotope 
effects to the structure of a saddle point on a potential-energy 
surface. The conventional transition state theory of kinetic 
isotope effects is so elegant and successful at the empirical 
correlation of data that one is almost regretful to find out that 
a better theory shows up some inadequacies. Future progress 
will require considering a wider range of reaction types and 
potential energy surface types and also developing a more re­
liable way to estimate tunneling and nonseparability effects. 
It would also be useful to estimate recrossing effects more 
accurately. One way to do this is by considering less con­
strained variational optimizations of the location of the dividing 
surface.19 
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Abstract: A cyclopropenium ion breaking one of its carbon-carbon bonds furnishes an orbital template which can be exploited 
by sundry mononuclear and binuclear transition metal fragments. 

One of the many things that transition-metal complexes 
do, and we wish we knew better how to control it, is to cleave 
and form carbon-carbon bonds. In this paper one very specific 
CC bond breaking, that in cyclopropenium cations and cy-
clopropenones, is investigated theoretically. The case is special, 
but the theoretical methodology developed here lends itself to 
obvious extension. 

We chose these three-membered rings for study in part be­
cause we understand the electronic structure of the organic 
moiety well and in part because the body of structural infor­
mation on C3R3 and cyclopropenone complexes is just reaching 
the critical stage, revealing a continuum of bonding modes 
which may trace out a reaction coordinate for the insertion 
reaction. 

The intrusion of a metal atom, with its associated ligands, 
into a CC bond of a strained three-membered ring may occur 
in either a single oxidative step, as in eq I,1 or following prior 
coordination of the organic ligand. Equation 2 represents 
perhaps the best characterized instance of this sequence.2'3 

C3Ph3-HrCI(CO)(PR3)., — -
Cl 

Ph (I) 

PR3 Ph 
1 

If coordination of the ring is a likely initial step, one is led 
to think about the ways in which a three-membered ring may 
be bound. Cyclopropenium complexes are not common, but 
we do have available structures in which the ring is TJ2, 3 , 4 - 8 ??2, 
4 , 9 a n d V , 5 . 1 0 

On the completely ring-opened or metallocyclobutadiene 

CH3 

MLn 

+ L2Pt-I 
-65' 

-C2H4 
L 2 P t -

CH, 

I-30* 
(2) 

L2Pt CH, 

O 
2 

- R R^ 
MLn 

3 
CpNl, 
PyxCINi, 
Br(CO)2Ni 
Co(CO), 

R3P 
^ 

PR, 

< 
CpFe(CO)2 

side we have the previously mentioned complexes 1 (and an 
analogous RhCl2(PMe2Ph)2(C3Ph3)12) and 2. Then we en­
counter a fascinating group of bi- or polynuclear complexes 
with C3R3 or C2R2CO units sitting atop them (6,13 7,14 8,15 

9 , 1 6 andl0 1 7 ) . 
Are the three-membered rings in these complexes com­

pletely or only partially opened up? As the cyclopropenium 
ring is cleaved one CCC angle, 6, opens up and the CC bond 
opposite,./?, stretches. Less obvious, but important, is the fact 
that the orientation of the metal atom relative to the three-
carbon plane changes. The metal is perpendicular to the plane 
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